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Dynamic correction to moment approximations

Iliya V. Karlin* and Alexander N. Gorban
Computing Center RAS, Krasnoyarsk, 660036, Russian Federation

G. Dukek and T. F. Nonnenmacher
Department of Mathematical Physics, University of Ulm, D-89069 Ulm, Germany

~Received 13 January 1997!

Considering the Grad moment ansatz as a suitable first approximation to a closed finite-moment dynamics,
the correction is derived from the Boltzmann equation. The correction consists of two parts, local and nonlocal.
Locally corrected thirteen-moment equations are demonstrated to contain exact transport coefficients. Equa-
tions resulting from the nonlocal correction give a microscopic justification to some phenomenological theories
of extended hydrodynamics.@S1063-651X~98!03502-8#

PACS number~s!: 05.60.1w, 44.10.1i, 47.10.1g, 51.10.1y
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A considerable part of the modern development of n
equilibrium thermodynamics is based on the idea of ext
sion of the list of relevant variables. Various phenomenolo
cal and semiphenomenological theories in this domain
known under the common title of extended irreversible th
modynamics~EIT! @1#. With this, the question of a micro
scopic justification of the EIT becomes important. Recall t
a justification for some of the versions of the EIT was fou
within the well-known Grad moment method@2#.

Originally, the Grad moment approximation was intr
duced for the purpose of solving the Boltzmann-like eq
tions of the classical kinetic theory. The Grad method is u
in various kinetic problems, e.g., in plasma and in phon
transport. We mention also that Grad equations assist in
derstanding asymptotic features of gradient expansions,
in linear and in nonlinear domains@3#.

The essence of the Grad method is to introduce an
proximation to the one-particle distribution functionf , which
would depend only on a finite numberN of moments, and,
subsequently, to use this approximation to derive a clo
system ofN moment equations from the kinetic equatio
The numberN ~the level at which the moment transport h
erarchy is truncated! is not specified in the Grad method
One particular way to chooseN is to obtain an estimation o
the transport coefficients~viscosity and heat conductivity!
sufficiently close to their exact values provided by t
Chapman-Enskog method~CE! @4#. In particular, for the
thirteen-moment~13M! Grad approximation it is well known
that transport coefficients are equal to the first Sonine p
nomial approximation to the exact CE values. Account
for higher moments withN.13 can improve this approxi
mation ~good for neutral gases but poor for plasmas@5#!.
However, what should be done, starting with the 13M a
proximation, to come to the exact CE transport coefficient
an open question. It is also well known@6# that the Grad
method provides a poorly converging approximation wh
applied to strongly nonequilibrium problems~such as shock
and kinetic layers!.
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Another question comes from the approximate chara
of the Grad equations, and is discussed in frames of the E
while the Grad equations are strictly hyperbolic at any le
N ~i.e., predicting a finite speed of propagation!, will this
feature will be preserved in the further corrections?

These two questions are special cases of a more gen
one, namely, how does one derive a closed description w
a given number of moments? Such a description is so
times called mesoscopic@7# since it occupies an intermediat
level between the hydrodynamic~macroscopic! and the ki-
netic ~microscopic! levels of description.

In this paper we aim at deriving the mesoscopic dynam
of thirteen moments in the simplest case when the kin
description satisfies the linearized Boltzmann equation. O
approach will be based on the two assumptions:~i! The me-
soscopic dynamics of thirteen moments exists, and is inv
ant with respect to the microscopic dynamics.~ii ! The 13M
Grad approximation is a suitable first approximation to t
mesoscopic dynamics. The assumption~i! is realized as the
invariance equation for the~unknown! mesoscopic distribu-
tion function. Following the assumption~ii !, we solve the
invariance equation iteratively, taking the 13M Grad a
proximation for the input approximation, and consider t
first iteration~further we refer to this as to the dynamic co
rection, to distinguish from constructing another ansatz!. We
demonstrate that the correction results in the exact CE tr
port coefficients. We also demonstrate how the dynamic c
rection modifies the hyperbolicity of the Grad equations.
similar viewpoint on derivation of hydrodynamics was ea
lier developed in@8# ~we will return to a comparison below!.

First, we review the Boltzmann equation and the 13
Grad approximation. We denote asn0 , u050, andp0 the
equilibrium values of the hydrodynamic parameters (n is the
number density,u is the average velocity, andp5nkBT is
the pressure!. The global Maxwell distribution functionF is

F5n0~vT!23p23/2exp~2c2!,

wherevT5A2kBT0m21 is the equilibrium heat velocity, and
c5v/vT is the peculiar velocity of a particle. The nea
equilibrium dynamics of the distribution function,f 5F(1
1w), is due to the linearized Boltzmann equation:
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57 1669DYNAMIC CORRECTION TO MOMENT APPROXIMATIONS
] tw5 Ĵw[2vTc•¹w1L̂w,

L̂w5E wF~v1!@w~v18!1w~v8!

2w~v1!2w~v!#dv18dv8dv1 ,

where L̂ is the linearized collision operator, andw is the
probability density of pair encounters.

n5dn/n0 , u5du/vT , p5dp/p0 (p5n1T, T
5dT/T0) are dimensionless deviations of the hydrodynam
variables, whiles5ds/p0 and q5dq/(p0vT) are dimen-
sionless deviations of the stress tensors, and of the heat flux
q. The linearized 13M Grad distribution function isf 0
5F(c)@11w0#, where

w05w11w2 , w15n12u•c1T@c22~3/2!#,

w25s:cc1~4/5!q•c@c22~5/2!#. ~1!

The overbar denotes a symmetric traceless dyad.
The 13M Grad’s equations are derived in two steps: fi

the 13M Grad’s distribution function~1! is inserted into the
linearized Boltzmann equation to give a formal expressi
] tw05 Ĵw0, second, projectorP0 is applied to this expres
sion, whereP05P11P2:

P15
F0

n0
HX0E X0•dv1X•E X•dv1X4E X4•dvJ ,

P25
F0

n0
HY:E Y•dv1Z•E Z•dvJ . ~2!

Here X051, X5A2c, X45A2/3(c22 3
2 ), Y5A2 cc,

andZ5(2/A5)c(c22 5
2 ). The resulting equation,

P0@F] tw0#5P0@FĴw0#,

is a compressed representation for the 13M Grad equat
for the macroscopic variablesM135$n,u,T,s,q%.

Now we turn to the main purpose of this paper, and der
the dynamic correction to the 13M distribution function~1!.
The assumption~i! ~existence of closed dynamics of thirtee
moments! implies the invariance equation for the true mes
scopic distribution function,f̃ (M13,c)5F@11w̃(M13,c)#,
where we have stressed that this function depends param
cally on the same thirteen macroscopic parameters, as
original Grad approximation. The invariance condition f
f̃ (M13,c) reads@8#

~12 P̃!@FĴw̃ #50, ~3!

whereP̃ is the projector associated withf̃ . Generally speak-
ing, the projectorP̃ depends on the distribution functionf̃
@8,9#. In the following, we use the projectorP0 ~2!, which
will be consistent with our approximate treatment of Eq.~3!.

Following the assumption~ii ! @13M Grad’s distribution
function ~1! is a good initial approximation#, the Grad’s
function f 0 and the projectorP0 are chosen as the input da
c
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for solving Eq. ~3! iteratively. The dynamic correction
amounts to the first iterate. Let us consider these step
more detail.

Substitutingw0 ~1! andP0 ~2! instead ofw andP in Eq.
~3!, we get (12P0)@FĴw0#[D0Þ0, which demonstrates
that ~1! is not a solution of Eq.~3!. Moreover,D0 splits in
two natural pieces:D05D0

loc1D0
nloc, where

D0
loc5~12P2!@FL̂w2#, D0

nloc5~12P0!@2vTFc•¹w0#.
~4!

Here we have accounted forP1@FL̂w#50, andL̂w150. The
first piece of Eq.~4!, D0

loc , can be termedlocal because it
does not account for spatial gradients. Its origin is twofo
In the first place, recall that we are performing our analy
in a non-local-equilibrium state~the 13M approximation is
not a zero point of the Boltzmann collision integral, hen
L̂w0Þ0). In the second place, specializing to the lineariz
case under consideration, functionscc and c@c22(5/2)#, in
general, are not the eigenfunctions of the linearized collis
integral, and henceP2@FL̂w0#ÞFL̂w0, resulting inD0

locÞ0
@10#.

Using Cartesian coordinates and summation convent
the nonlocal part may be written as

D0
nloc52vTf 0~P1ukrs]ks rs1P2u ik]kqi1P3]kqk!, ~5!

where] i5]/]xi , andP are velocity polynomials:

P1ukrs5ck@crcs2~1/3!d rsc
2#2~2/5!dkscrc

2,

P2u ik5~4/5!@c22~7/2!#@cick2~1/3!d ikc2#,

P35~4/5!@c22~5/2!#@c22~3/2!#2c2.

We seek the dynamic correction of the form

f 5 f 0@11w01f#.

Substitutingw5w01f, andP5P0, into Eq. ~3!, we derive
an equation for the correctionf:

~12P2!@FL̂~w21f!#5~12P0!@vTFc•¹~w01f!#.
~6!

Equation~6! should be supplied with the additional cond
tion, P0@Ff#50.

Let us apply the usual ordering to solve the Eq.~6!, intro-
ducing a small parametere, multiplying the collision integral
L̂ with e21, and expandingf5(nenf (n). Subject to the ad-
ditional condition, the resulting sequence of linear integ
equations is uniquely soluble. Let us consider the first t
orders ine.

BecauseD0
locÞ0, the leading correction is of the ordere0,

i.e., of the same order as the initial approximationw0. The
function f (0) is due to the following equation:

~12P2!@FL̂~w21f~0!!#50, ~7!

subject to the conditionP0@Ff (0)#50. Equation~7! has the
unique solutionw21f (0)5s:Y(0)1q•Z(0), where functions
Y(0) andZ(0) are solutions of the integral equations:
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1670 57KARLIN, GORBAN, DUKEK, AND NONNENMACHER
L̂Y~0!5bY, L̂Z~0!5aZ, ~8!

subject to the conditionsP1@ f 0Y(0)#50 andP1@ f 0Z(0)#50.
Factorsa andb are

a5p23/2E e2c2
Z~0!

•L̂Z~0!dc,

b5p23/2E e2c2
Y~0!:L̂Y~0!dc.

Now we are able to notice Eq.~8! coincides with the CE
equations@4# for the exact transport coefficients~viscosity
and temperature conductivity!. Emergence of these we
known equations in the present context is important a
rather unexpected:when the moment transport equations a
closed with the locally corrected function floc5F(11w0

1f (0)), we come to a closed set of thirteen equations c
taining the exact CE transport coefficients.

Let us analyze the next order (e1), whereD0
nloc comes into

play. To simplify matters, we neglect the difference betwe
the exact and the approximate CE transport coefficients.
correctionf (1) is due to the equation

~12P2!@FL̂f~1!#1D0
nloc50, ~9!

the additional condition isP0@ f 0f (1)#50. The problem~9!
reduces to three integral equations of a familiar form:

L̂F1ukrs5P1ukrs , L̂F2u ik5P2u ik , L̂F35P3 , ~10!

subject to the following conditions: P1@F0F1ukrs#
50, P1@F0F2u ik#50, and P1@F0F3#50. Integral equa-
tions ~10! are of the same structure as are the integral eq
tions appearing in the CE method, and the methods to ha
them are well developed@4#. In particular, a reasonable an
simple approximation is to takeFi u•••

52AiP i u•••

. Then

f~1!52vT~A1P1ukrs]ks rs1A2P2u ik]kqi1A3P3]kqk!,
~11!

where Ai are the approximate values of the kinetic coe
cients, and which are expressed via matrix elements of
linearized collision integral:

Ai
21}2E exp~2c2!P i u•••

L̂P i u•••

dc.0. ~12!

The estimation can be extended to a computatio
scheme for any given molecular model~e.g., for the
Lennard-Jones potential!, in the manner of the transport co
efficients computations in the CE method.

To summarize the results of the dynamic correction,
quote first the unclosed equations for the variablesM13
5M135$n,u,T,s,q%:

~1/vT!] tn1¹•u50, ~13a!

~2/vT!] tu1¹~T1n!1¹•s50, ~13b!

~1/vT!] tT1~2/3!¹•u1~2/3!¹•q50, ~13c!
d
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~1/vT!] ts12¹u2~2/3!¹q1¹•h5R, ~13d!

~2/vT!] tq2~5/2!¹p2~5/2!¹•s1¹•g5R. ~13e!

Terms spoiling the closure are the higher moments of
distribution function,

h52p23/2E e2c2
wcccdc, g52p23/2E e2c2

wccc2dc,

and the ‘‘moments’’ of the collision integral,

R5
2

vT
p23/2E e2c2

ccL̂wdc,

R5
2

vT
p23/2E e2c2

cc2L̂wdc.

The 13M Grad’s distribution function~1! provides the
closing approximation to both the higher moments and
‘‘moments’’ of the collision integral:

R052m0
21s, R052l0

21q,

¹•h05~2/3!I¹•q1~4/5!¹q,

¹•g05~5/2!¹~p1T!1~7/2!¹•s, ~14!

wherem0 andl0 are the first Sonine polynomial approxima
tions to the viscosity and the temperature conductivity co
ficients @4#, respectively.

The local correction improves the closure of the ‘‘m
ments’’ of collision integral:

R52mCE
21s, R52lCE

21q, ~15!

where index CE corresponds to exact Chapman-Enskog
ues of the transport coefficients.

The nonlocal correction adds the following terms to t
higher moments:

¹•g5¹•g02A3¹¹•q2A2¹•¹q,

¹•h5¹•h02A1¹•¹s, ~16!

whereAi are the kinetic coefficients derived above.
In order to illustrate what changes in Grad equations w

the nonlocal correction, let us consider a model with tw
scalar variables,T(x,t) andq(x,t) ~a simplified case of the
one-dimensional corrected 13M system where one ret
only the variables responsible for heat conduction!:

] tT1]xq50, ] tq1]xT2a]x
2q1q50. ~17!

Parametera>0 controls ‘‘turning on’’ the nonlocal correc
tion. Using$q(k,v),T(k,v)%exp(vt1ikx), we come to a dis-
persion relation for the two rootsv1,2(k). Without the cor-
rection (a50), there are two domains ofk: for 0<k,k2 ,
dispersion is diffusionlike@Rev1,2(k)<0, Imv1,2(k)50#,
while as k>k2 , dispersion is wavelike @v1(k)
5v2* (k), Imv1(k)Þ0#. For a between 0 and 1, the dis
persion modifies in the following way: the wavelike doma
becomes bounded, and exists forkP]k2(a),k1(a)@ , while
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57 1671DYNAMIC CORRECTION TO MOMENT APPROXIMATIONS
the diffusionlike domain consists of two pieces,k,k2(a)
and k.k1(a). The dispersion relation fora51/2 is shown
in the Fig. 1. Asa increases to 1, the boundaries of t
wave-like domain,k2(a) and k1(a), move towards each
other, and collapse ata51. Fora.1, the dispersion relation
becomes purely diffusive (Imv1,250) for all k.

We close this paper with a discussion.
~i! Considering the 13M Grad ansatz as a suitable

proximation to the closed dynamics of thirteen moments,
have found that the first correction leads to exact Chapm
Enskog transport coefficients. Further, the nonlocal par
this correction extends the Grad equations with terms c
taining spatial gradients of the heat flux and of the str
tensor, destroying the hyperbolic nature of the former. C
responding kinetic coefficients are explicitly derived for t
Boltzmann equation.

~ii ! Extension of Grad equations with terms like those
Eq. ~16! was mentioned in many versions of the EIT@11#.
These derivations were based on phenomenological
semi-phenomenological arguments, in particular, the ex
sion of the heat flux with appealing to nonlocality effects
densefluids. Here we have derived the similar contributio
from thesimplest~i.e., dilute gas! kinetics, in fact, from the
assumption about the existence of the mesoscopic dynam
The advantage of using the simplest kinetics is that co
sponding kinetic coefficients~12! become a matter of acom-
putationfor any molecular model. This computational aspe
will be discussed elsewhere, since it affects the dilute
contribution to dense fluids fits. Here we would like to stre
a formal support of the relevance of the above analysis:

FIG. 1. Attenuation Rev1,2(k) ~lower pair of curves!, frequency
Imv1,2(k) ~upper pair of curves!. Dashed lines: Grad case (a50),
solid lines: dynamic correction (a50.5).
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nonlocal piece of dynamic correction is intermediated by
local correction,improving the 13M Grad estimation to the
ordinary transport coefficients.

~iii ! When the invariance principle is applied to deriv
hydrodynamics~closed equations for the variablesn, u and
T) then @8# the local Maxwellianf lm is chosen as the inpu
distribution function for the invariance equation. In the line
domain, f lm5F@11w1#, and the projector isPlm5P1; see
Eqs.~1! and ~2!. When the latter expressions are substitu
into the invariance equation~3!, we obtain D lm5D lm

nloc5

2vTF$2¹u:cc1¹T•c@c22(5/2)#%, while D lm
loc[0 because

the local Maxwellians are zero points of the Boltzmann c
lision integral. Consequently, the dynamic correction beg
with the ordere, and the analog of Eq.~9! reads

L̂f lm
~1!5vT$2¹u:cc1¹T•c@c22~5/2!#%,

subject to the conditionP1@Ff lm
(1)#50. The latter is the fa-

miliar Chapman-Enskog equation, resulting in the Navi
Stokes correction to the Euler equations@4#. Thus,the non-
local dynamic correction is related to the 13M Gra
equations entirely in the same way as the Navier-Stokes
related to the Euler equations.As the final comment to this
point, it was recently demonstrated with simple examples@3#
that the invariance principle, as applied to the derivation
hydrodynamics, is equivalent to the summation of t
Chapman-Enskog expansion.

~iv!. Let us discuss briefly the further corrections. T
first local correction@the functionsY1 andZ1 in Eq. ~8!# is
not the limiting point of our iterational procedure. When th
latter is continued, the subsequent local corrections are fo
from integral equations,L̂Yn115bn11Yn , and L̂Zn11
5an11Zn . Thus, we are led to the following two eigenvalu
problems:L̂Y`5b`Y` , andL̂Z`5a`Z` , where, in accord
with general argument@8#, a` andb` are the closest to zero
eigenvalues among all the eigenvalue problems with
given tensorial structure@12#.

~v! The approach of this paper can be extended to de
dynamic corrections to other~nonmoment! approximations
of interest in the kinetic theory. The above analysis has de
onstrated, in particular, the importance of the local corr
tion, generically relevant to an approximation that is no
zero point of the collision integral.
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